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CERTAIN PROBLEMS IN GANETOHYDRODYNAMICS
CONSIDERING THE F1JI• E•! CONDUCTIVTTY Of THE -MEDIUM

!Following is a translation of an article by
I. I. Nochevinka entitled !'Nekotoryye Zadachi
Magnitnoy Gidrodinamiki s Uchetom Konechnoy
Provodimosti Sredy" (Eriglisi vrersion above)
in Vestnik Mo~kovskogo Universiteta. Seriya
III, 1izika, Astronomiya (Herald of Moscow
University, Series 3, Physics,--Astronomy),
Vol 1961, No 1, Moscow, 1961./

An approximating method of finding the parameters of
planar motion of a condocting gas ib offered, taking into
account "magnetic" viscosity in the presence of a magnetic
field, perpendicular to the plane of flowo

An approximating technique is advanced for the solution
of the equations which describe the planar, isentropic flow
of an ultrarelativistic gas in an arbitrary magnetic field.

Examinations of the motion of conducting fluids in the
environment of magnetic fields, with the consideration of
magnetic viscosity, have always encountered substantial
mathematical difficulties. Up till now only the special
cases of motion of a fluid with finite conductivity in a
magnetic field have been successfully investigated.

We will examine planar motion of an ideally compres- 0

sible fluid with finite conductivity in a transverse magnetic
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field lit(). 0. -1) , which can be descri~bed by the system
of equations

rot IV-*Y*I - ,, VIT*; div-H* = 0;

-- VP*. ' to div(p**)%-O; p*-f(0,*, s*), (1)

where i* . - coefficient of magnetic viscosity,

-H*- volume density of the electromagnetic
8w

force.

We introduce the dimensionless parameters

to ; *-* _p=- P* = ao I*

a0 PO10

Y= Y*; -= -, (2)

where by the zero index is signified the corresponding
characteristic magnitudes for the given flow. System
(1) in dimensionless variables takes the form

rot IA'-H -- dv•/H div Yf. 0,
)-- _.P div(:')=0: P." f,(,). (3)

where P- the total pressure of the gas and of
the magnetic field.

In the case of constant finite conductivity
(1 •collst) , considering that "di\ R=0 , the equation of

induction to within the gradient of an arbitrary function
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can be put in the form

ILHL 7rot1 , (E)

which is equivalent to the equations

0 dX

j. e. v grad.he• (f In H.. (5)

Thus, the investigatirn of planar motion of an ideally
compressible conducting fluid with a constant coefficient
of conductivity in a transverse magnetic field reduces to
the investigation, with the aid of well-cultivated
methods, of purely hydrodynamical potential flows by the
meansr ef, the transformed equation of state L 2J.

In a series of cases it is necessary to consider the
variability of the coefficient of conductivity due to
the presence of large conductivity gradients. If under
these circumstances the conductivity gradient coincides
in direction with the conductivity current, as for
example in the cooling of the stream in a plasmatrong L24
then Igrad xrotR=O and the equation of induction
within the margin of an arbitrary function can be written
as

bil vs(X.y) rot

from which

v(XY) 'r,(X.y)grad q, (6)

where I = In H, and In H, const form a family of surfaces,
normal to the lines of current. This is equivalent to
some vortical flow with a coefficient of proportionality
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In such oases, when from a series o" faotors giving
rise to a variability in the maWnetio viscosity, we can
single out a basic one, i.e., we can consider the cooef-
fiaient of magnetic viscosity as a function of one in-
dependent variable, e.g. ) the examining of the
parameters can be conducted with the assistance of the
method developed in work --LJ.

In the role of an application we will examine the
problem of the outflow of an ideally compressible fluid
in the presence of a conductivity gradient which coin-
cides in direction with the conductivity ourrent, from an
infinite vessel with flat sides in the presence of a
perpendicular magnetic field. We will accept the above
mentioned suppositions and consider the equation of
state in the form P(ps)==A(s),-Bj. Performing calcula-
tions analogous to Z 1/, we will obtain equations for
the determination of the functions of current 4.' and of
the quasipotential pI in the variable's r(q). @(01 - the
angle of inclination of the velocity vector with the

- axis).

0' , d)(6pl'...pp .~4p~1~*
0-- -- In 1 K 0 p - --,-. r

K f V,,," 4p.JA,- .' I,'(p.-.p)' -•, +

d r(' 4y).(6p - 9• ) 1 Q ))

By the introduction of Chapygin's approximating function
K(r) V. equations (7) and (8) can be put in the form 5J.7
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I p i (1

i7, -- I (9)

wh-re "'Thie uaXici*ent DI ar C are chosen so that they

wijll give the approximate equation of state's best approx-
imation to wiat is asked for in the defined range cf
Yauh muýibers.

DAkt &q and A'B' be pro- 8
jections oft the walls onto the .. ..-
plane aXY (Pi0. 1). We will
turn the X-axis perpendicular
to the wall of the vessel1

through the middle of BB'.
We will consider the volume
outflow per second of the c
fluid Q, which by Tirtuie of
eonzinuity Must be one and
the same in all sections of
the stream. Let fm - a Pig. 1
plane of fluid at infinity,

, a plane outside the
'vessel, I'o - a plane in an adiabatically restricted gas.
We evil1 select the line of current alo.ng the I-axis as
zero, i.e, , (, O)=O for 0.- ,o , . By this a
constant is immediately defined for eaah line of current,
equal to tht outflow Gf the fluid through a section of a
tube of ourrent and passing through the line _in question
ard zero, i.e., Q=(M,--..Uio) The boundary condi-
tions a',. •) for mach a choice we obtain as

- . ...q - = foor ,•'. " to"( ".--:'i) o 0

-2
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Considering the region of variability of the plane
of the fluid.•" .i, from the relations'hip connecting
r with Z1-./, we will determine thv range of varia-

bility of r. Then immediately with the help of (10) we
obtain boundary conditions for the function .*(r. 0)

*i~..- Or't,>r > Fj

( -for , - r r1;

-"or.•r -Q--r 1 D) *-- - for 02' .(I

.• -(r, ,,O-- . 2 "~f or 0 (.j ll

Equation (9) can be solved by a Fourier method

.•(ry f) r(r)4'(). (12)

For the funotions R(r) and (00) we obtain the equations

_ - . ( 0O. (13)

dIR~ ('s) I .W

d3 ) ± ,, !A'A*( I)R(r) 0o.

where

A* 0.
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From the condition of periodioity for the function 0(8);

it' follows that - whare n iet an nteger. lItroduo-
n.g a new variable r-= - a r in~to 3easel's equa-

tion (14) we will obtain

' (16)

whose solution is expressible by Bessel funotions of
Imaginary argument.

R() =- C;I, +Ci K. (17)

From the conditionn of boundednees of the fluid plans at
ifinii ty Pap.<N the boundedness of r(tJ~i follows; from
-where C;*= &. The general solution of equation (14) we
obtain in the form

(r. ,.cos (n) + Az.sin (A)j K11) (I"• tnr). (18)

The function f(r, $)I can be analogously defined.

The transition to the physioal plane can be aooomp-
lished with the aid of the formulas
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p Jr/

((19)

Thus the methods developed in bydrodyr ai- can be
e'ffctv.e~y applied not orily in the iavestigation of
p.Lanar motionýr of a cor-d'cting fl-tild in a transverse mag-
netoe field, whe•i the conductivity is infinitely l.rgeg
but also in a series of cases wh-vr, it is necessary to
concern oneself with th~e presence~ of magnati~c viscsity,
~co nataut or vari~ibJe with thý. gradieyt which coi,-oides
wth the dir-ection ofL the conduotivi-ty oux'reiat.

Th s the appo ximat. method dei• crobed cuan also be
applied in the exanvsination of planar problems in the
ul.trarelat-vistic case of motion of a conducting mead-um
in -the presence of arbitirary magnetic fieldte.

The motion of a relilk. vistic gas in the presence of
arbitrary magnetic tield, cau be represented in the form
of an equality to zero of the divertence ofs the total
mechanical and esecwthrotagnetip tensor of the energy-
impulse. In the case of an infinite oondyotivity of the
as, the enery-impua se tencor can b6 written in the form

TrA ~ pd(k~ 12, 3,4), (0

pwhere Win PV+Ve- + W the tota' '•beat content of p a the
ga and oh the magnetio fielnd, Poa-Ppiry the total
pressure, V - the specific volume, Ili - 4tvelocityo

It can be proved that in the case of arbitrarily
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chosen magnetic fieldt it is sufficient to limit oneself
only to the investigation of the modified tensor of
energy-impulse of macroscopic bodies, which include in

themselves additional heat content W' and additidnal
pressure P. , in the general case w' and P a an
easily be calculated by the formulas

F, ,, U'" . P, F ,I = ,M- • '(

.. - components of the electromagnetic field
S"- -n (".o system of representation K' , relative to

w12-'•. r-e .r,' en element of gas travels with-velocity u
The expediency of knowing the total energy-impulse tensor
of the system, gas and electromagnetic field, compared to
the tensor of the macroscopic bodies appears during the
transition from one representation to the other, seeing
that the Lorentz transformation for the components of the
tensor of an electromagnetic field F., is much simpler
than for the components of the electromagnetic tensor of
energy-impulse 7,.

An investigation of the parameters of planar flow of
an ultrarelativistic gas in a given magnetic field in the
case of maintaining isentropic behaviour can be conducted
with the aid of the method set forth in work [-i2. We
will conduct an investigation for an infinitesimally
small element of gas in the laboratory system K' . In
the case of isentroplc flows, there exists, as Is known,
a relativistic analogue of the potential

U1
dx, (22)

from which for planar flows we have for i 1.2

ax, ox., (23)
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Introducing aiwo with the help of the relativistic equa-
tion of continuity the relativietic analogue of the
function of current

I' Tx I |" 7x (24)

we obtain equations analogous to the equations fqr jLta-
tionary, planar, vortical flow of a commox sW L iJ/

.~--- = .... (x,., = x, Y)," dT 4' -" , (25)

where the role of the ooefficient of proportionality
is filled by the magnitude of the reciprocal of the totalheat content. Thus, the problem reduces to the solution
of the equations (25) with the use of the relativistic
equation of Bernoulli

-- O C •- omst- , Cl~ (26)

and of the equation of state

p*=ft -l. 4e , V 2)./ '(27)

which in the case of an ultrarelativistio system is
wholly determined by the fixing of one thermodynamic
function (e.g. wý ). Introducing new independent
variables ý 1zv*)f and t4 , where ti - angle, formed by
the 3-vector of velocity !"ul with the. X-axis, and noting
that I. " 4V(- , we can put the equations
(259 i) the fAora.

(28)
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With this we suppose that the functions q and • are
continuous, finite, single-valued and -that the Jacobian

:0 in all regions of the flow. Placing in (28)

the quantities u(W') and -- defined in (26), 1'1w*) and

(i~ 4
in (27), noting in the limiting case V- , and

"ty i. g on (arbitrary function of w* ) the simpli-
f.ed C ,,it Lon

A,(--3w•• +4) dw*
w'(i -w', d. (29)*

(29)

we put equations (28) in the form

.(*) .(30)

where

K (w*) A ,' (- .w" 4 4)
Wo' (I - 2w•')

is the Chapyginr function introduced by us.

The solution of equations (30) with the help of
Chapygin's approximating method is put forth in work
z J.

Isentropic flow of an ultrarelativistic gas in a
perpendicular magnetic field is examined by the sur-
mised method. By this it comes to light that a perpen-
dicular magnetic field does not violate the isentropicity
of an ultrarelativistic gas. In the case of a magnetic
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field arbitrarily disposcd in the plane of flow, isen-
tropic behaviour is generally violated.
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